Formic acid oxidation on platinum: a simple mechanistic study.

نویسندگان

  • Kathleen A Schwarz
  • Ravishankar Sundararaman
  • Thomas P Moffat
  • Thomas C Allison
چکیده

The oxidation of small organic acids on noble metal surfaces under electrocatalytic conditions is important for the operation of fuel cells and is of scientific interest, but the basic reaction mechanisms continue to be a matter of debate. Formic acid oxidation on platinum is one of the simplest of these reactions, yet even this model system remains poorly understood. Historically, proposed mechanisms for the oxidation of formic acid involve the acid molecule as a reactant, but recent studies suggest that the formate anion is the reactant. Ab initio studies of this reaction do not address formate as a possible reactant, likely because of the difficulty of calculating a charged species near a charged solvated surface under potential control. Using the recently-developed joint density functional theory (JDFT) framework for electrochemistry, we perform ab initio calculations on a Pt(111) surface to explore this reaction and help resolve the debate. We find that when a formate anion approaches the platinum surface at typical operating voltages, with H pointing towards the surface, it reacts to form CO2 and adsorbed H with no barrier on a clean Pt surface. This mechanism leads to a reaction rate proportional to formate concentration and number of available platinum sites. Additionally, high coverages of adsorbates lead to large reaction barriers, and consequently, we expect the availability of metal sites to limit the experimentally observed reaction rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation.

The Pt84Pb16 (atomic ratio) bimetallic alloy nanoflowers (Pt84Pb16 BANFs) are synthesized by a simple one-pot hydrothermal reduction method that effectively enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR) due to the ensemble effect and the electronic effect. As a result, the mass activity of Pt84Pb16 BANFs for the FAOR is 16.7 times higher than that of commercia...

متن کامل

Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation

The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...

متن کامل

Electrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode

In the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode (Fe3O4@Pt/CCE). The Fe3O4@Pt nanoparticles were prepared via a simple and fast chemical method and their surface morph...

متن کامل

Formic acid electrooxidation on thallium-decorated shape-controlled platinum nanoparticles: an improvement in electrocatalytic activity.

Thallium modified shape-controlled Pt nanoparticles were prepared and their electrocatalytic activity towards formic acid electrooxidation was evaluated in 0.5 M sulfuric acid. The electrochemical and in situ FTIR spectroscopic results show a remarkable improvement in the electrocatalytic activity, especially in the low potential region (around 0.1-0.2 V vs. RHE). Cubic Pt nanoparticles modifie...

متن کامل

Iridium-platinum alloy nanoparticles: Composition-dependent electrocatalytic activity for formic acid oxidation†

IrxPt100 x alloy nanoparticles with varied compositions (x1⁄4 100, 75, 67, 50, 34, and 0) were synthesized by a thermolytic process at varied ratios of the IrCl3 and PtCl2 precursors. High-resolution transmission electron microscopic (HRTEM) measurements showed that the nanoparticles all exhibited well-defined crystalline structures with the average core diameters around 2 nm; and the elemental...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 32  شماره 

صفحات  -

تاریخ انتشار 2015